在现代无线通信和数字无线系统中,为了实现更高的频谱效率,各个频道之间相距很近。使用数字多载波调制方案的正交频分多路复用 (OFDM) 技术在宽带数字通信中得到广泛应用。
测试无用的非线性频谱失真对于频道间隔较窄、带宽较宽的通信系统至关重要。这些失真通常是由元器件、模块、子系统和整个设备造成的。
它们可能是信道内、频段内和频段外出现的多余频谱信号。它们不仅会降低发射机的性能,还会影响接收机的灵敏度。
失真可能会在信号发生器中累积。失真性能是信号发生器(信号源)的主要技术指标之一。失真性能可能对器件表征产生重大影响。在本章中,您将了解到各种不同类型的失真,以及它们对测量结果有何影响。
什么是失真?
我们都知道它听上去怎么样,它令我们的耳朵多么不舒适。当您加大数字设备的音量时,失真便会发生。当音频系统无法输出完整的幅度,峰值被削掉后,就会出现谐波失真。
失真是对原始波形的改变。在信号发生器中,有两种主要的非线性失真:谐波失真和互调失真
当纯正弦波的平滑电压变化突然遇到电压变化而中断时,便会发生谐波失真。这种突然变化通常是由非线性半导体造成的。谐波的频率是正弦波的整数倍。
互调失真是当您将两个或多个不同频率的信号混合在一起时,所获得的杂散输出。杂散输出是输入频率整数倍的和与差。
哪些是线性失真,哪些是非线性失真?
答:失真是对原始波形的改变。放大器的频率特性不好,对输入信号中不同频率成分的增益不同或延时不同,这样产生的失真称为线性失真。
非线性失真就是产生新的频率成分。在信号源中,有两种主要的非线性失真:谐波失真和互调失真。当纯正弦波的平滑电压变化突然遇到电压变化而中断时,便会发生谐波失真。这种突然变化通常是由非线性半导体造成的。谐波的频率是正弦波的整数倍。互调失真是当您将两个或多个不同频率的信号混合在一起时,所获得的杂散输出。杂散输出是输入频率整数倍的和与差。
测量失真
谐波失真
我们以一个连续波 (CW) 音频为例,介绍一下如何测量谐波失真。图7.1显示了一个谐波失真测量装置。被测器件 (DUT) 可能是一个放大器或混频器。信号发生器输出一个连续波,其频率为Fi。这个连续波通过一个低通滤波器,以便消除来自信号发生器的谐波失真。注意,这个低通滤波器的截止频率 Fc 小于 2Fi 。

图1 谐波失真测量装置
谐波表示为基频功率与谐波频率功率之比。例如,一次谐波可以表示为:

测过使用的信号发生器必须谐波失真很小,而月在信号发生器与被测器件之间必须有一个低通滤波器。这样可以确保测得的谐波是来自被测器件,而不是来自信号发生器。
互调失真一双音频互调
目前,评测互调失真的技术有很多。最简单的互调失真测量方法是使用双音频三阶互调法,也称 IP3 (三阶截获点)。IP3 法使用双音频输入信号,并测量被测器件非线性部分所生成的三阶失真信号。
图2显示了双音频三阶互调测量装置。被测器件可以是一个放大器或混频器。
F1 和 F2 是双音频输入的频率。两个信号发生器输出的两个频率通过混频,生成了这个双音频信号。双音频信号必须不包含任何三阶信号。这个三阶失真信号发生在2F1-F2 和 2F2-F1 频率处(红色),它也是距离原始双音频频率最近的失真。事实证明,要想通过滤波消除它们非常困难。在通信系统中,它们对相邻信道形成了干扰。

图2 双音频互调失真测量装置
假设两个测试音频的幅度相等,IP3是输入音频与三阶信号之差.
IP3(dB)=Po-Po3
其中,Po是其中一个输出音频的幅度,Po3 (红色)是双音频任何一侧三阶信号的幅度。
互调失真一频谱再生
在最新的无线标准中,通常使用更宽的带宽和多载波技术(例如载波聚合)来显著提高数据吞吐量。双音频三阶互调法无法全面表征宽带宽元器件的特性。
使用幅移和相移的数字调制会产生一定的失真,这也称为频谱再生。图7.3显示了数字调制信号的频谱再生(红色区域)。
频谱再生在主信道外扩散。此类失真可以通过相邻信道功率比 (ACPR) 测量来分析。它会测量主信道功率与落到相邻信道的功率之比。
图3 数字调制信号的频谱再生
想要使用信号发生器来仿真失真?请试用我们的生成功率放大器测试信号 。
在大多数一致性测规范中,ACPR 测量都是一项关繾的发射枧特征。要执行ACPR测量,您需要使用失真极小的信号发生器,以生成符合特定标准的测试波形。
应用指南
"如何使用射频矢量信号发生器和信号分析仪确保完成对 LTE功率放大器进行快速准确的 ACPR测量。"
最大程度地提升器件性能
在长期演进 (LTE) 演进型节点 B (eNB) 功率放大器测试中,研发验证对 ACPR 测试的要求是在10 MHz 信道偏移时,失真大约为-60 dBc。N5182B 的典型失真性能为-69 dBc。由于发生器的失真极小,所以您可以充满信心地进行ACPR测量。表7.1显示了Keysight N5182B 信号发生器的3GPP LTE-FDD(频分复用)失真性能。

表1 N5182B 矢量信号发生器的3GPPLTE-FDD失真性能
相关产品
RIGOL推出的新一代多通道波形生成解决方案平台。它不仅拥有高达500MHz带宽、2.5GSa/s采样率和16bit高分辨率的核心性能,更在紧凑的机身内集成了多达8个独立输出通道。无论是皮秒级的精密同步,还是纯净安全的隔离输出,DG5000 Pro都旨在为您解决多通道、高精度的复杂测试难题,并显著节省宝贵的实验空间和投...
RIGOL推出的新一代多通道波形生成解决方案平台。它不仅拥有高达500MHz带宽、2.5GSa/s采样率和16bit高分辨率的核心性能,更在紧凑的机身内集成了多达8个独立输出通道。无论是皮秒级的精密同步,还是纯净安全的隔离输出,DG5000 Pro都旨在为您解决多通道、高精度的复杂测试难题,并显著节省宝贵的实验空间和投...
RIGOL推出的新一代多通道波形生成解决方案平台。它不仅拥有高达500MHz带宽、2.5GSa/s采样率和16bit高分辨率的核心性能,更在紧凑的机身内集成了多达8个独立输出通道。无论是皮秒级的精密同步,还是纯净安全的隔离输出,DG5000 Pro都旨在为您解决多通道、高精度的复杂测试难题,并显著节省宝贵的实验空间和投...
RIGOL推出的新一代多通道波形生成解决方案平台。它不仅拥有高达500MHz带宽、2.5GSa/s采样率和16bit高分辨率的核心性能,更在紧凑的机身内集成了多达8个独立输出通道。无论是皮秒级的精密同步,还是纯净安全的隔离输出,DG5000 Pro都旨在为您解决多通道、高精度的复杂测试难题,并显著节省宝贵的实验空间和投...
相关文章
R&S®SMW200A矢量信号发生器可在高度集成的雷达场景模拟器中充当强大而灵活的信号发生源,用于最逼真和灵活的雷达场景。借助R&S®SMW-K503/-K504选件,R&S®SMW200A可以使用流式脉冲描述字(PDW)生成未来的高级I/Q调制雷达信号。它支持高达12兆脉冲描述字/秒(MPDW...
通感一体化(ISAC)是6G的关键技术,它将通信与环境感知这两种各有异同的技术融为一体,让6G的未来成为现实。实现ISAC的关键技术要素包括采用MIMO阵列的波束赋形、人工智能(AI)、现代调制方式以及密集的网络基础设施。R&S®AREG800A汽车雷达回波发生器是多功能ISAC研发测试解决方案的核心组件。
R&S®射频端口校准软件配合R&S®SMW-K545选件,可为校准和对齐多台耦合双路径或单路径R&S®SMW200A矢量信号发生器的射频端口之间的幅度、群延迟和相位提供标准且量身定制的解决方案。此外,R&S®脉冲序列器软件支持用户计算用于干涉仪测向(DF)测试案例所需的信号。结合上述软件...
射频组件表征通常包括测量调制精度、匹配度或完整的 S 参数。调制精度通过误差矢量幅度 (EVM) 或误码率 (BER) 等参数测量设备的传输性能。射频组件表征还会测量组件是否符合带外发射和邻道泄漏比 (ACLR) 等监管要求。匹配测量可确保组件在系统中按设计运行,例如在特定天线阻抗下实现额定功率传输。测试时间是一个关键...
汽车电子雷达对于高级驾驶员辅助系统 (ADAS) 至关重要,将有助于实现汽车行业的零事故、零死亡的净零目标。即使存在干扰,雷达传感器也必须探测到驾驶环境中的目标。R&S®AREG800A 汽车电子雷达回波发生器是雷达传感器抗干扰性测试解决方案的重要器件。
联系电话: 18165377573