是德频谱分析仪无线应用中进行实时测量

  时间:2025-11-03 14:25:07          

无线应用中最常见的实时(无间隙)分析类型是连续的功率频谱测量和时间捕获,并可在回放捕获结果时进行灵活的后期处理。连续频谱测量是实时频谱分析仪(RTSA)的特殊功能,而捕获/回放操作通常是由矢量信号分析仪(VSA)完成。RTSA 的连续功率频谱测量一般有两种方式:

生成密度或频谱图等频谱显示

根据模板测试频谱结果,生成频率模板触发

另外一种非常重要但较不起眼的测量是实时标量测量,它测量的是瞬时通道振幅或幅度,其中的“通道”由分析仪的数字化扫宽定义。幅度测量以两种方式提供。Keysight RTSA 提供功率与时间(PVT)测量,而 Keysight VSA 提供基于幅度的无间隙触发功能,并以幅度迹线显示测量结果

如前所述,Keysight PXA 和 MXA X 系列射频分析仪使用相同的硬件平台,能够执行 RTSA、矢量信号分析和传统的扫描频谱分析。

所有这些测量在无线应用中是非常有用的,我们将会在接下来的章节中说明。表 1 汇总介绍了各种类型的工具,以及它们在无线应用中进行实时分析的优势和限制。

是德频谱分析仪无线应用中进行实时测量(图1)

显示捷变信号和复杂的信号环境随着信号越来越捷变、信号环境日益复杂,在单个屏幕上显示大量测量数据也变得越来越实用。在现代射频应用中,最常见的实时测量结果可以用密度、直方图或累积的历史迹线或频谱图描述。

新的显示充分利用了 RTSA 的高速数字信号处理能力,每秒钟生成数千个频谱 — 远远超过了肉眼所能分辨的数目。在此情况下,可通过收集统计数据和显示特殊测量值(例如在特定频率上的特定幅度)出现的频次,得到信息量最大的显示界面。图 1 显示了一个结果实例

 

是德频谱分析仪无线应用中进行实时测量(图2)

测量结果直方图(图 1)是经过强化的频谱测量结果,可显示发生频次。它不只是一个可视化工具,还可量化测量发生频次(通常用 % 表示),并通过游标读取在任意频率/ 幅度点上发生的频次。这些显示界面使用颜色或迹线亮度进行编码,并可添加余辉 功能,使显示的旧数据逐渐变暗,让用户集中注意力查看较新的事件。工程师能够查看并关注偶发事件或瞬态,并把它们与其他特性区分开来。通过改变余辉和颜色加权值或方案,可以将特定特性突出显示出来,从而快速和全面地评测频段的频谱占用率。

借助 RTSA 的快速、无间隙处理能力,从密度或直方图显示界面也能轻松地找出罕见 或意外的信号或信号特性。尽管单个显示界面能够揭示具有超低占空比的信号,但它无法揭示信号计时或特定的信号特性。当信号计时十分重要时,密度显示界面的频率 (颜色)编码可以转换为频谱图显示界面的时间编码(Y 轴)。在 RTSA 中,频谱图显示界面由垂直层叠的迹线组成,每个迹线都是一条直线,表示一次频谱显示更新。每个迹线或频谱显示更新线的信号功率与频率关系都已编码或映射到颜色。图 2 清晰地显示了信号功率谱与时间的关系。

 

是德频谱分析仪无线应用中进行实时测量(图3)

清晰了解信号特性和信号环境,对许多无线应用都有好处。密度和频谱图测量组合可提供完整的视图。大多数频谱图可与直线或“切片”游标功能搭配使用,该游标功能通过水平显示线来选择频谱图缓冲区内的单个迹线,并显示特定时间点的频谱。注意:每个谱线通常表示多个乃至成千上万个频谱结果。在 Keysight PXA 和 MXA 信号分析仪中,默认设置是大约 300,000 个频谱/秒除以 30 ms 显示更新速率,即每个谱线上产生大约 10,000 个频谱。根据分析仪的显示检波器设置(一般是峰值或平均值),把单个频谱编译到一个显示更新或谱线中。

VSA 中创建频谱图显示界面的方式略有不同,特别是在时间捕获/回放操作方面。本文稍后将举例进行对比。

通过触发查找特定信号或信号特性

经过 RTSA 处理得到的高速无间隙频谱结果还有另一个用途,即基于频谱的触发或频率模板触发。具有 RTSA 功能的 PXA 或 MXA 分析仪拥有大约 300,000 个频谱/秒的显示更新速率,并将计算出的频谱结果与上限、下限或上/下限模板进行比较,根据结果触发一次测量结果显示。频谱测试还受到逻辑条件的影响,例如要求信号离开并重新进入模板,以产生一次触发。

频率模板触发的直接用途是在频谱环境中重点对特定信号进行测量。相比之下,射频幅度触发可在多种情况下应用,用于测量脉冲或猝发信号(稍后阐述);不过,幅度法 仅对总体射频测量功率有响应,对单个信号没有响应。如果指定的触发信号不是最大 信号,或者与最大信号没有时间关联(允许幅度触发使用时延),那么幅度触发可能不适用。图 3 中,我们隔离出了特定频率的蓝牙猝发,并在包含更宽、更大的无线 LAN 信号的环境中进行测量。

 

是德频谱分析仪无线应用中进行实时测量(图4)

频率模板触发特别适用于拥挤和动态变化的频谱环境,尤其是有问题的信号或信号特性非常罕见和难以预测的情况。在这些情况下,使用 VSA 时间捕获和后期处理等方法并不实用,因为 VSA 很难通过一次特殊捕获便捕获到指定信号,并且审查大量捕获数据需要耗费很长时间。

频率模板触发功能充分利用 RTSA 的处理能力,可以查看特定信号或频谱特征,连续数分钟、数小时或更长时间地评测信号。在无线应用中,这种功能有助于检测问题,例如瞬态干扰、合成器稳定性或锁定问题、频率转换误差和幅度不稳定性。例如,您可以轻松配置频率模板触发,以检测发射机、接收机或其元器件和子系统中的颤噪效应。

89600 VSA 软件也充分利用了 RTSA 的频率模板触发功能,启动各种单次采集测量或时间捕获操作。频率模板触发可通过 VSA 软件来配置,包括触发前时延和触发后时延。使用触发前时延,可以在触发事件之前用户选定的时间内获得数据和测量结果。这样有助于在无线应用中了解信号或系统问题以及异常特性的根源。

让测量结果与猝发保持一致

信号分析仪有时还可以与 89600 VSA 软件结合使用,提供一种更简单的实时模式(不依赖 RTSA 功能):中频幅度触发。信号分析仪平台中的专用硬件和固化软件可以实时计算每个 I/Q 样本的信号幅度(即测量扫宽内的总信号)。触发电平和极性是可调的,而且触发释抑功能十分灵活,触发前和触发后时延也是可调的。这为无线工程师提供了一个强大的触发功能,它不仅非常适合常见的脉冲信号和猝发信号,还可用于故障诊断任务,确保分析仪正常工作。

由于幅度触发是逐个样本进行评测的,而频率模板触发是对每个时间记录或 FFT 频谱计算结果进行一次性评测,两者相比,中频幅度触发更具优势。幅度触发在时间上可以精准地与脉冲、猝发或电平变化保持一致,从而更轻松地进行矢量或解调测量,避免在某些解调操作中进行脉冲或同步搜索。

中频幅度触发的时间校准还允许使用时域或矢量平均方法。在时间平均法中,在执行频谱、矢量或解调分析之前,需要采集信号的连续样本块(时间记录)并求平均值。这样可以显著降低噪声对任何测量类型的影响,而频率模板触发无法做到这一点。

与频率模板触发一样,中频幅度触发可用于触发单独测量,或启动时间捕获,然后进行后期处理(本文稍后说明)。触发前/触发后时延和释抑功能以相同方式执行,无论采集是单次进行、多次进行还是时间捕获的。

相关产品

相关文章

安泰测试

联系电话: 18165377573